OBS
g B NHAEERIIEITE” [HPC, DL, Business platform system, CloudB2&&i]
> BN - BB CREHR), DL, BEY-5 (Google, Amazon, Alibaba, MeiTuan, ...)

O &itR
B HAFEFRIIEF — Divide & Conquer, Model & Challenges, PCAM, Data/Task, ...
- RETURRITE
B E{TIME
> i@ — BOMRIBAY3 NG 2 — Shared/Unshared Memory, Hybrid
> B — 1A%, Modern OS, Distributed Job Scheduler, GTMZ
O SR
® OpenMP, MPI, CUDA (DLHYZEE)), Big Data FRIMR/SparkZ (Ri$ K& 1EBig Data SDKZ _FAYYR
2, KEEASIINBNEIRE—ED)
O RFR R — BEEMFEHRIEH
B FORBIRIARZER
niES
B RFZER (HTAPS)
» Flink, ClickHouse, MaxCompute, ELK ...

PARALLEL
COMPUTING:

ol it [Parallel Computing: Fundamentals, Applications
Fundamentals,

Applications and and New Directions
New Directions

O E.H. D'Hollander, F.J. Peters, G.R. Joubert, U.
Trottenberg and R. VOlpel (Eds.)

1 North Holland
11998

https://book4you.org/g/E.H.%20D'Hollander
https://book4you.org/g/F.J.%20Peters
https://book4you.org/g/G.R.%20Joubert
https://book4you.org/g/U.%20Trottenberg%20and%20R.%20V%C3%B6lpel%20(Eds.)

e i O FTiRERET
5‘!|:1f ﬁiﬂﬂ&%ﬁ ' OTimothy G. Mattson, Beverly A. Sanders, Berna
| L. Massingil

O AP MG T FHATIRIERT BRI SFIIRN,
BEAEEE] 1TJH=H$£TEI\JI:| 5. FHIIIEHES
. BT AFRIFAE. BREHEIRIT,
FFEEHA), ﬁiJrEI’J;&fMﬂ,%'JLX&O penMP, MPIZ,
ABEIAEREVAOARI SRR AR, IR
BRI A TR KEARARSE,

02015

Patterns for Parallel Programmin

https://book4you.org/g/Timothy%20G.%20Mattson
https://book4you.org/g/Beverly%20A.%20Sanders
https://book4you.org/g/Berna%20L.%20Massingill

TrRESIe
O Ananth Grama, George Karypis, ZKi#, FEEFHZE
. Anshul Gupta, Vipin Kumar, EZ@?F

O ((#ﬁfr%:«%i’e)) (FRPE2hR) EE M AFTIHERY
AN HE, @?EMV, S A TWJ\ BEESMNFE
5FE|¢T\/E—:, W RFHTIHERIHET N, ﬂzgm isd%
é}EEI’J %, W0H F‘ R, BEiSHES <<
TIHESIE) (RPHE20R)/FAT8ExK 'j}EEE‘ a7%x
%E’JW% LI B SRS, B
i EEMPI. POSIX@%&%KOpenMPVE#JﬁHEﬁ'J
, HEARGIFH /M 7 HITTERAR LRI

HE ARRGNES RIFHENER SN, KR, SASHANES. BETHT
i TEFESNESE®E, FEARTENMRASKETALXMERENIHIHARRESKIZIT
S 12005 &3k, HhigEiEMPI (Message Passing Interface). POSIX&:#2#10penMPiX = /R Fi &/
TESTIL ZHRSABEFTEFNREEARERE, HELRGIFPRIRTHTIHERIREEL
WNAES. ABEHAE, AEMRE. mzSERGRITHSIEE, EMEaREFE.

Introduction ta Parallel Computing

A& [FRR B 19934 AR SE 1 MR BI2003 4 AR S 2RR LSk . EAHSERE RS ZHXA A
BERRAMEMARENAMXSER.

https://book4you.org/g/Ananth%20Grama
https://book4you.org/g/George%20Karypis
https://book4you.org/g/%E5%BC%A0%E6%AD%A6
https://book4you.org/g/%E6%AF%9B%E5%9B%BD%E5%8B%87
https://book4you.org/g/Anshul%20Gupta
https://book4you.org/g/Vipin%20Kumar
https://book4you.org/g/%E7%A8%8B%E6%B5%B7%E8%8B%B1

Chapter 02: HPC with example

ClFaster for larger data
@
» “Using Python to Solve Computational Physics Problems”

® |deas to convert Sequential to Parallel
» Shared Memory programming, Distributed Memory programming
» Hint to get the EUs for the Heat Equation

® Measure the performance

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

You're required to implement
this Heat Transfer problem
Into Distributed Versions —
MPI, CUDA and MR (even

multithreaded)

@ https://www.codeproject.com/Articles/108702

cmEezE--rr @ =0 - BETFRFEL O de==cE

w Challenge has only 13 days left. Details here.

09

A

K For those who code ad Frec .

home quick answers discussions features © community help

Articles = General Programming = Algorithms & Recipes » General

Article

*__ Using Python to Sol

Stats @ Garbel Nervadof, 21 1000)(1000, 10000)(10000,
eisorse) & 7269 100000X100000, ..

Alternatives
Comments (3) This article demonstrates how to

to plot the solution of the equation
Add your own

CISE301_Topic9

— W Ve RNOW SOl Techmole
OA grid is Used 1o divide the reglolr?Qf Interest -

M Since the PDE is satisfied at each point in the area, it must be satisfied at
each point of the grid.

O A finite difference approximation is obtained at each grid point.

E-l._}' —EEJ—'-I 1,5 I.j-l _21_;_]'+E.j' 1

(Ax)? (Ay)?

In our case, the final discrete equation is shown below.

1, .
L= 1'..1']—1.;' + T j+Tja+1 1)

=0

1 The code demonstration of “Using Python to Solve Computational

Physics Problems”

1. Configure the parameters
o

>

»Boundary conditions
v [BFREEH]

B Termination condition
» Iteration number or Epsilon

numpy np

lenX = lenY =

delta =

Tguess =

X, Y = np. meshgrid (np. arange (
lenX)
np. arange (0, lenY))

T = np. empty((lenX, lenY))
T. fill (Tguess)

59

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

Tinj — 20+ T | Tijs1— 215 + Ti j
(Ax)? (Ay)?
In our case, the final discrete equation is shown below.

1, .
Lij= 7T + Tirj + Tijn + i)

=10

41,5

0 The code demonstration of “Using Python to Solve Computational

Physics Problems”

1. Configure the parameters

B GRID
> With Initial values [#J3R1{E]
>

v

B Termination condition
» Iteration number or Epsilon

Ttop =
Thottom = —
Tleft =
Tright =

TL(lenY-1):, :] = Ttop
TL: :] = Tbottom

Tl:, (lenX-1):] = Tright
TL:, :1] = Tleft

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

Tinj — 20+ T | Tijs1— 215 + Ti j
(Ax)? (Ay)*
In our case, the final discrete equation is shown below.

1, .
Tij = 7Ty + Tiaj + Tijnn + Tij)

=10

41,5

1 The code demonstration of “Using Python to Solve Computational
Physics Problems”

1. Configure the parameters
® GRID
»>With Initial values [#J45{E] maxlter =

»With Boundary conditions
v [BFREEH]

iteration (0, maxIter) :

> or Epsilon

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

'I—J-l._}'_.zlr;_j‘"}r? 1,5 I.j-l_.z}_;_j‘"}r:.j 1
(Ax)? (Ay)?
In our case, the final discrete equation is shown below.

1 .
ﬂy—?T + T +Tijn+Tij-1)

=0

"lj

1 The code demonstration of “Using Python to Solve Computational
Physics Problems”

2. lterative updating

B Use “Termination condition”
to control the updating of
the internal vertices

()
iteration (0, maxIter):
i (1, lenX-1, delta):
J (1, lenY-1, delta):

T[i, j (TLi+1][j] + TLi-11[5] + TLillj+1] + TLil[j-11)

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

T4 1, — 21—;, + T 1,5 'I—.'._j'-l - 21—;, T I_u 1

. = ()
(Ax)® (Ay)?

In our case, the final discrete equation is shown below.

j."._j' = 1'-.1{.'—1._,': T Jlre—l._j L I."._j'—l L J{."._j'—l.-l

[0 The code demonstration of “Using Python to Solve Computational
Physics Problems”
3. Visualize the dynamics

colorinterpolation =
colourMap = plt. cm. jet

{{Repeated updating>>

plt. title()
plt. contourf (X, Y, T, colorinterpolation =colourMap)

plt. colorbar ()

plt. show ()

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

L Copy the code into PyCharm project

File Edit View Mavigate Code Help
I =

parallel_python-master

o simpleFDM ~

Project «

chapter1

I 1:Project |

chapter2
chapter3
chapterd
chapters

examples

£ ¥V v VvV v v v

examplesHeat
= simpleFDM.py
> source

.gitignore

.python-version
from.txt

= NOTES.md

= README.md

= requirements.txt

w |||l External Libraries

Run: . simpleFDM

Please wait for a moment
G N
Tteration finished
|
=
=4
- (=
.2
]

examplesHeat

k4 parallel_pythen-master 0y Cods\

¢ & m F | Q

= simpleFDM.py

e

paral Package requirements 'amgp==2.0.3", 'anyjson==0.3.3", 'Babel==2.3.4", 'billiard==3.5.0.0", 'celery==3.1.23", 'flower==0.... Install requirements

= simpleFDM.py |

2 impert numpy

14 Thottom = 0
15 Tleft =0

s np

i.qut matplotli'b. P

Ttep = 100

Tright = 20

#/ €/ +Q/=E

@ Figure 1 —

Contour of Temperature

17.5

15.0

6o

10.0
- 48

7.5

5.0

2.5

0.0

0.0 2.5 5.0 7.5 10.0 150 175

x=8.37954

y=10.2917

I¢

Small challenge

0 Define and use Epsilon to control the repetition?

1 Hint:
B Use the matrix norm

OO0 Run the program with different scales
B When the “maxlter = 1000007, the program takes almost 40 minutes!
B When “lenX = lenY = 10000" + “maxlter = 10007, it takes 64832 secs = 18

hours!
MateBook D
SLAS A . e HW
v AT7% 82% 0% 0% .
- . - s _ me Lore(TM)i7-8550U CPU @ 1.80GHz 2.00
& pyCharm (5) 23.3% 1,5946.. 0MB/F 0Mbps
(7.89 GB o] [)
=) TeamViewer 14 (32 fi7) 18.1% 4.7 MB 0 MB/#b 0 Mbps
e oo e oo JA4-0449-AFES-B2E3-A62A6C1E6124
FTER ID 00342-30262-00002-AA0EM
R it 64 HRIEZRSGE, BT x64 RFUNEEE

parallel_python-master st Package requirements 'amqp==2.0.3", 'anyjson==0.3.3", 'Babel==2.3.4", 'billiard==3.5.0.0", 'ce
chapteril
chapter2
chapter3
chapter4
chapter5

examples

examplesDL

>
b=
L=
>
L=
>
>
v

examplesHeatCUDA

You can try

OO0 Run the program with different scales

B When “lenX = lenY = 100000” + “maxliter = 1000”, the error of
“Mmoror”!!

C:\ProgramData‘\Anacenda3’envs)chir36i\python. exe D:/MyCode/MyHPC/parallel python—master/examplesHeatMPI/simpleFDM2. py

m i e dl & >

® How to finish the computation of the weather-forecasting for Beiding, China,
Globe?

Chapter 02: HPC with example

ClFaster for larger data

® Seguential implementation with Python
» “Using Python to Solve Computational Physics Problems”

» Shared Memory programming, Distributed Memory programming
» Hint to get the EUs for the Heat Equation

® Measure the performance

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

FATAL I T R FHAT AR T R a9 a2 —, 4 R B 89 5F + LA, VAR) 65
THRIAFE, EAFENFXRFR G, AX—H, BENBIATEIIAZITE 69 R AL
K.

§4.1 FHITHIERINHERZIRE

FHAT AR L 2A 4o T 89 =AF XA
o TMARERX (Master-slave): H —/~ £t 42, ¢ hMdtfe, XX P, Tof2—
B TN FATAZ A 09 3B A2 4), MIEAZ B T AT SR a9 L 38 feit BAE 4, SR, £t
F2H T VARG HEE ey 3 it B, — R ILTF, AEAZZ) & A S8 4k, 3B
89 i A2 258 i F VEAZ RO AR AT
o SHARKER, (SPMD). FEiX AP MATAER P, A I AZ A T HEA2, B2 4G HAL T
AR 49, Rfn, EFATEILAR P, KAVE R TR P RF—ANSATH A E
gt AL, TR oY A G A L UEAZ EA,
o 3A2FHX (MPMD): FEAFANZH LEHATHAZR T A TR 69, R E
o AL AT AR) 4942 /.

B REIHTIHH

B & B AR AR A5 s

chiGsceas.cn, chi@sc.cnic.en

http://lssc.cc.ac.cn/
http://www.sccas. cn/
http://www.scgrid.cn/
http://www. cngrid.org/

2005 74 H 6 [

MPI 5% 3 3 Message Passing Interface 69455 . I T 81515 %55 FF4T42 5 09 —
AR P& SRR B AT AL L AR A 6 — AL O AR X, 45 AR A
KAEE) =T 7 8 4T3 AL SPCs (Scalable Parallel Computers) Fa TAEEALEE NOWSs
(Networks of Workstations) 3 COWSs (Clusters of Workstations). & 24 1k % H€ 9
AZfp K IT X, A2 R A2] 091815 RA W SR L2 R —F k4R £ MPI A= PVM)
HVART, AT IR 5 AT AR R A A XY, 3T R BE 49 AT ALt & 5 R

Bl 4 FATAL 5, 4o FHATAR kit e B A R T 3R 2R, T R FHATIF ALY A P iadnd &
—3k3E JH 490 BAEE R PR, AE AT LR A B ATAR R — AR A ST AS A

B REIHTIHH

IR o B A F R AR A L P
chiGsceas.cn, chi@sc.cnic.en

http://lssc.cc.ac.cn/
http://www.sccas. cn/
http://www.scgrid.cn/
http://www. cngrid.org/

2005 74 H 6 [

HPComputing: How to get cooperated units?

— Divide & Conqguer

“Work”

am

Partition

|
|

Result Combine

\w
==
/

Example: scalar product of vectors

@ Input E
iInput

do i=1,N do i=1,N/2 do i=N/2+1,N
S=s+ab, S,=S,+ab. S,=S,+ab.
enddo enddo enddo
output 8:31+32
! v output
print S print S

Sequential (serial) algorithm Parallel algorithm

Program parallelization techniques.
1. Program Mapping
e Program Partitioning. Dependence
Analysis.

e Scheduling & Load balancing.
e Code distribution.

2. Data Mapping.
e Data partitioning.
e Communication between processors.

e Data distribution. Indexing of local data.

Transformation based parallel programmin

Program and data mapping should be consistent.

Program Parallelization

Program
Code Data
Partitioning Partitioning
Tasks + Data
dependence
mapping mapping
scheduling
P processors P processors
parallel code

K. Mani Chandy, Stephen Taylor. An Introduction to Parallel Programming. Jones and Bartl

DAOM (199 1) Burlington. 1991.

04 Steps in Creating a Parallel Program

Partitioning

|
e
- > _|
= e
O
OQ

Tasks Processes Parallel Processors

~SO035Q—0nn >

SO———mnooT300M00O —

SO -~ =s~0n0o30-=0
Q> —ooT Ol

P

':U

Sequential

computation program

»Decomposition of computation in tasks
»Assignment of tasks to processes
»Qrchestration of data access, comm, synch.
»Mapping processes to processors

DESIGNING =« BUILDING
PARALLEL PROGRAMS
and lools for

Foster‘s model — PCAM (1995)

I In "Designing and Building Parallel Programs” lan Foster proposes a ™ =«
model with tasks that interact with each other by communicating
through channels.

M A task is a program, its local memory, and its communication in-ports and
out-ports.

B A channel connects a task's in-port to another task's out-port.

B Channels are buffered. Sending is asynchronous while receiving is
synchronous (receiving task is blocked until expected message arrives).

However, lan Foster provides an outline of steps in his online book Designing
and Building Parallel Programs [19]:

1.

Partitioning. Divide the computation to be performed and the data operated on by
the computation into small tasks. The focus here should be on identifying tasks
that can be executed 1n parallel.

Communication. Determine what communication needs to be carried out among
the tasks identified in the previous step.

Agglomeration or aggregation. Combine tasks and communications identified 1n
the first step into larger tasks. For example, if task A must be executed before task
B can be executed, it may make sense to aggregate them into a single composite
task.

Mapping. Assign the composite tasks identified in the previous step to processes/
threads. This should be done so that communication 1s minimized, and each
process/thread gets roughly the same amount of work.

This 1s sometimes called Foster’s methodology.

—~<BC PCAMIR It T3 35

{15 1/ (Partitioning)
BB B e /M5
P S O T AT AL 2

253
i1 i(Communication) O OO0 O
5 V55 BT T o 5 e . 0000
FIER AT 55 10 P0A T, FHUEASI 3k OO0
Ry 5 B R
154 (Agglomeration) Ia <

S SR SCBI (L 5 @
AL 55

INEN AT S T I N e %:)
AL IR ORI T 55 AR ek fi A -—

e I R e /2 [| R {5 1 P = O
12 f5e /N A a0 A IS TR 5 1
A UL K dpe A A PR3 1) %

JL{[I l|J
LEPEESIL (Mapping) O —%} @ @

Creating a parallel program

[Problem to solve]

‘ Decomposition
Subproblems [j () [) (j (j [)

(a.k.a. “tasks”,

“work to do”) [j [] (] (j (]

ParalelThreads ™ || 11 L0 L 1 L *Ihadtopikatem
(“workers”)
Orchestration
Parallel program l a2 - :_ : [----5 st . l [l
(@mmuniating |
threads) T ' | | ’["""" | """"""""""""" — ¥
ing
These responsibilities may be assumed by
Execution o the programmer, by the system (compiler,
paraliel maciine runtime, hardware), or by both!
Adopted from: Culler, Singh, and Gupta MU/ B KEE, Summer 2017 -

Ox¥5 (Partltlon/Decompose) ,
B 75 TR ES A SRR B Creating a parallel program

HE [Problem to solve
" TR TR R ORE R P i ())

1Tt EINEERY D R (FRINEE D FR) e OO ()
O 1%7%—(1|t|7|<*|:h«_|_ <E.4\1:E§C, ‘ Assignment

m {ohrE Bt IR E B B iR ey bl Ll e b Ld L
*ﬂlﬁ%ﬁﬁ{j—‘? 1:/3]—{ i—]l Orchestration

' N l—*J

= RE7 /9K oy ||
threads) 11 | " [¥
> 155 \ﬁq:(Domaln Decomposition) | Mapping

ab/\ gecs | Bees These responsibiliti

>IjJ ﬁb]j %q:(FunCtlonaI Execution 0!1 T e the programmer, by

Decom POS ItIo n) paraliel machine —==l===-1 runtime, hardy
Adopted from: Culler, Singh, and Gupta = * =

O 12k 531
B ORI RESTE, LSRR TPHVEIAEL
B AR D R REUESRYNSIE A
B YR e EdE _ERUMERR(E
B NR—MESFTERRNMESFRISEE, NEFEESENEE,

2. PEMREEHGEF R EUE;

-

ij_z_;fﬁﬂ: SHMENES R, SRR LTRSBEESH. TER=M"SHR

%

O AFRN X1k B9 53 % 3= 51

5
STAR S L7
A A A ST A e
e e

o
RN

Fl
i
1%"
)
R
=25 fnd
=

e

o

ok
5
o
i
A

e
K
e
T

AR
) ey A st
i A NE AT
A IR S T e A
R S

4]

%’

5
B,
O

]
5

’..L
S

L1y

4'1
Ee i S
BE

O IhgE
=Bl \H’Ji(]‘;%xerl‘%“ (TR ESpiEEGTEX D) . BitEN s ARERES
, HHARARTFIED#E;
DR, ARAEMESFRIEAENE. WEXEEIEAEZA, Wilo2I0AY
, WMNRBIEEHEINES, EUEEEY_ EAENEEHE, BEEFTIHITED R
FOTHEED % ;
B EEn R — T E REIREID R
O L EER 2. S{EI=RE

Atmospheric Model

' '

Hydrology

Model Ocenn
¢ Model

Land Surface Model pee—m

0185
m BEREPCAMIZITE *EEI’J SEME;
B Yo ERYEESS, ~BETS
W7, EEEESER 1‘.1"5'551 BT,)‘A
M= 7 1BE;
= Ibﬁﬁﬁj\ﬁfﬁ%ﬁ??i% (FSZERIEERER,
B EESEAH AT, BENRE X
FhF Zi'ﬁ
O BRI
SR VESSIELS
B ZEHHY/AEERHIE(S

O %%l &/ EjJILJ\L_r_

Creating a parallel program

[Problem to solve J

Decomposition

swiens () JOCOC OO
“work to do”) | m (]
Parallel Threads ** ..
(“workers”) E--e---cd el bbbl b bld b L
l Orchestration
Parallel program]—{ -]Hl—*l [—‘J
(communicating —’ —~ —i — —

threads) = tj " - b e T I""[""I L""""E "4-
T L | ‘ Mapping
(==

These responsibiliti
the programmer, by
runtime, hardy

Execution on
parallel machine N | [

Adopted from: Culler, Singh, and Gupta

O BEEE EREE

o SEBIEPRHE— 4B = 30
- All to All
. . . - Master-Worker

=R 2MHERAY;

=
=]

S
m B MESSHIE(

O 5134k

SIRIL?

" TEESFEE— M HEE(

(=1

A
v

v
. d »
- »
> .‘ .
A

jummﬁ
N ﬁr.u
LIl f Il

—
(=

{

k£

]

&/

—
(=

{

18

B 2E— G —HIE(

O 513441

IKFERY

1T EHY

)
=

{

A Y

\

i
&

Gl
=1 THIA

p

A~
=

{

9510
G

H

=
=]

G|
S

B

=
=]

f5uan. Foasramdts

3

B

I

n
E
® o ©

=l
JER

HEA3ERY

«—

A

\4

A

v

—

«—
—

1]

A

o ____q“ﬂb_wwwﬂﬂm

I
]

i

R
A

Parirad
...1A .VHA

]

gvl

i
1

e L

A
A

Xt
A‘hﬁ
A

W
)
T
5

e

O RAE/RLiBEE
" FEGEEE, BKOATIREANEERE REEER, BRRIESELEES
RIETFTE
O B(EFIE
B R EESEEITAEEIRERS?
n EER0eeNEEREE?
B BEERERAREFITIIT?

N

m [E ISR RS HTHIT?

O{F34ES .
= A RHSIEAOTRE, £ Creating a parallel program
BERHESHAE—EFHTILEN [- J
it 4= Decomposition
E#MT' SIS TAT % swobens () (C)OO C OC OO
B SHNRTES, BMESEL. W wiver (D G GED G)
RES ’éSZTA %’if- QLIRESEN, MHB
= i@ﬁinnﬁfmﬁ EMESITE,
o] LU MBS

(communicating

» (SRS TR RENE, MR
14:: :$EEEZIS B These responsibiliti

Execution on HHE R the programmer, by

parallel machine I | | E— runtime, hardv
e Saes

I T

Adopted from: Culler, Singh, and Gupta

O FR M-S FRN

mEEE

SIESFERIFRERKIELL,

=] ﬁbl}jz/ I\l_1|:|$

TR S S TR

]
—»

m

M

[]
—P

'y
(C)rud
Yy

47
[]
[]

cLE;

O&\ESitHE
nESITERVEEE, BENTTIiTEE, MRS ZHa9NET,
-z&ﬁ%mﬁhrmwﬁﬁm S =1: =]

ORG: =X ENDMEIBERNDM RIS, ERBMIERIIRIGESH
B Y ESKED, HFE2logNiE

ORG: =X ENDMEIBERNPMEAI2H, ERBMCIERIIRIGSH
XSk, EFRTESITE, HEElogNE

B & @& &% W

O ASHIHE
B IEINRER SR T EEmA?
" ESEEAENGE T HSER?
B BERET 7 RISEMAY BE?
» HERESHES SRR T BELH?
B EERE 7R EMEE?

B GIREROFHTRITHINR?

O Qb TS RhE: ,
%nggﬁﬂ%ﬁﬁu,!%ﬂtﬂ’ﬂ%;% (reating a parallel program
SR THEEL T
= (ESEATAPERAE, FES NU— Y
CHERHESS R ine OO COC!)
mRESRIB TR EDEERVA TR

]
FHEIES AEBYNIEES
FEFZBFEREEN R4 by |

EE E’% threads) '

O H%%T*BT _*EIJ*R?%:T [} J% - NP% HFQ% Qﬁg These responsibiliti

'I'

él l:ﬂ ;EE Executiono!l HHE R the programmer, by
parallel machine ﬁ@. ﬁ runtime, hardy

Adopted from: Culler, Singh, and Gupta

O Sagk i

W ERSHY:

IIInI

HICHARE ;

mEIEREY . PEERE

m ST FUTHREIENES SR

.v

1570 RN -

>L_E|5U"U
> BERERE
>R
> (EINBRET

Al
t_ .

N

O (ESHESHE

m ﬁitu CESESHEMBERETIEX, EEoikEREEFSIMEISHIRINS
/
B SO B RIS EHERE RIS,
> BRSO ENNREREETIHESEENTE, (E7SSRENE, ERAEESHNT
{EEFIIEERAYIEREE AT LAFTNRYFH EIRE B IRYR D EChIESS.

> BSREE (Statlc Scheduling) BE—REFSHATNUIERE DB INESEEINMNENR,
Heb mEAORer, 20018388, eI ARE (Round-robin) EI’JTJ“EEE SRS EC
155, BEEIMEMEDELES mod pMEIESE

8 ISR SEEEN RE, AILETRERRANE R AT S i

> ZFoZSVEE (Dynamic Scheduling) i REFITITEAREIHAR, BEEXRNEREESS(Self
Scheduling). RBEVEEBSS(Block Self Scheduling). IE&BEAEGSS(Guided Self

Scheduling). EFo#EEAEFS(Factoring Scheduling). SBHZEIREETSS(Trapezoid Self
Scheduling). E&IEEAS(Affinity Scheduling). £ BIEESSS(Safe Self Scheduling)

FEIENFESTEEAAS(Adapt Affinity Scheduling)

O 18/ B MRIVESEE

RRE a1

2 NE

ER RS

O Hﬂﬂﬁﬂ?&

TEHNESS

. Ej]lu ﬁ'\t

\YJ

=Pz

Y

pp

B, ERESEERERIEE

FRESS

LETh R, RRFEEEHRT
VAE TR

E5

\IHQE’JEJZZIKQMT

el vt

SPMD or MPMD
[0 Single Program, Multiple Data

task 1 task2 task3 ... taskn

0 Multiple Program Multiple Data

task 1 task2 task3 ... taskn

Single Program Multiple Data (SPMD)

@ All processes execute the same program, but on different parts of
data.

» also known as data parallelism
» similar to Master/Worker, but here we might have communication
between tasks.

distribute tasks

receive results

SPMD (Single Program Multiple Data) (a)
MPMD (Multiple Program Multiple Data) (b,c)

AN T AR TTT

G101 T8] [0 AEIRE
ol (o] 8] [StTgttsl| |8]]¢]]®
sllole] [T [le| [&]]%]]9
N? N?Z N?S N? Node2 Nod N91 N{;}Z N?3

(a) SPMD (b) MPMD: Master/Worker (c) MPMD: Coupled Analysis

https://www.cs.ubbcluj.ro/~vniculescu/didactic/PPD/C10.pdf

Master/Slave or Master/\Worker

@ A master process is responsible for

g

g

>

initiating the computation
possibly determine the tasks
distribute tasks to worker
pProcessors

aggregate partial results from
workers, and produce final result

@ slaves/workers execute a simpler
execution cycle

g

receive task

» compute task

» send task-result to master

send tasks

receive results

What is Master/Slave principle?

C0The master has the control over the running application, it
controls all data and it calls the slaves to do there work

PROGRAM
IF (process = master) THEN
master-code
ELSE
slave-code
ENDIF
END

Simple Example SPMD&Master/Slave

For i from rank step size to N do

s=s+a;b
2 PN O R - VTN o PR > PPN o IR T
enddo 1M1 Ml+size™ 1+size " '1+2*size™ 1+2*size

master

[0 Decomposition/Partitioning
M |dentify concurrency and decide level at which to exploit it
»Break up computation into tasks to be divided among processes
B Tasks may become available dynamically
»No. of available tasks may vary with time
B Goal: Enough tasks to keep processes busy, but not too many
»Number of tasks available at a time is upper bound on achievable speedup

One simple example — Data Parallelism

0 A parallelizing compiler must ig

dependences BETWEEN ITH Of course, real problems

are more complex!!

Example: Fork one thread for each
processor
Each thread executes the loop:
A(I) = B(I) + C(I) A(I) = B(I) + C(1)
D(I) = A(I) D(I) = A(I)
end do end do

Wait for all threads to finish
before proceeding.

[0 Decomposition/Partitioning
Simple way to identify concurrency is to look at loop iterations

— dependence analysis; If not enough concurrency, then look further

Not much concurrency here at this level (all loops sequential)

Examine fundamental dependences

N

NN
NN
R

D

QO

N

TR T T
5

Q

=

D
N

Q
S

%,

Concurrency O(n) along anti-

diagonals, serialization O(n) along

diag.

Retain loop structure, use pt-to-pt
synch; Problem: too many synch ops.

Restructure loops, use global synch;

imbalance and too much synch

O Exploit Application Knowledge
M Reorder grid traversal: red-black orderina

@ Red point

@ Black point

SEEs o3ek

» Different ordering of updates: may converge quicker or slower
* Red sweep and black sweep are each fully parallel:

» Global synch between them (conservative but convenient)

0 Assignment/Agglomeration

B Specify mechanism to divide work up among processes
» E.g. which process computes forces on which stars, or which rays
» Balance workload, reduce communication and management cost

W Structured approaches usually work well
» Code inspection (parallel loops) or understanding of application

» Well-known heuristics
» Static versus dynamic assignment

B As programmers, we worry about partitioning first
» Usually independent of architecture or prog model
» But cost and complexity of using primitives may affect decisions

[0 Orchestration
» Naming data
» Structuring communication
» Synchronization
» Organizing data structures and scheduling tasks temporally

® Goals
» Reduce cost of communication and synch.
» Preserve locality of data reference
» Schedule tasks to satisfy dependences early
» Reduce overhead of parallelism management

@ Choices depend on Prog. Model., comm. abstraction, efficiency of
primitives
® Architects should provide appropriate primitives efficiently

O Mapping

B Two aspects:
» Which process runs on which particular processor?
v/ mapping to a network topology
» Will multiple processes run on same processor?

M space-sharing
» Machine divided into subsets, only one app at a time in a subset
» Processes can be pinned to processors, or left to OS

B System allocation

@ Real world
» User specifies desires in some aspects, system handles some

B Usually adopt the view: process «» processor

Example: iterative equation solver

O Simplified version of a piece of Ocean simulation

H Goal:

» Simulate the motion of water currents in the ocean. Important to climate
modeling. Motion depends on atmospheric forces, friction with ocean floor, and
“friction” with ocean walls.

» To predict the state of the ocean at any instant, we need to solve complex
systems of equations.

vvvvvvvvvvv

PR RO
L EREREE SRRRREC ity
Tarm | Lty i
A AL 1
.
iy

Q00000000 O0
000000 O0OO0
o000 O0O0O0OO0OO0
000000 O0OO0
Q00000000 O0
00000 0QO0OO0
Q00000000 O0
Q0000000 O0OO0
Q0000000 O0OO0
Q0000000 O0OO0

(a) Cross sections

Example: iterative equation solver

O Simplified version of a piece of Ocean simulation

Ol lllustrate program in low-level parallel language
M C-like pseudocode with simple extensions for parallelism
B Expose basic comm. and synch. primitives
W State of most real parallel programming today

© 0 0 0 © 0 0 ¢ 0 0
@ 0 0O 0O C O 0O O O O
© 0 0O 0 0 0 0 0 O O Expression for updating each interior point:
© 0 0 0 @ 0 0 0 O O | Alij]=02x (Alijl] + Alij- 1]+ Ali—1,]] ++
© O 0O 06~8-0 O O O O Allj+ 1]+ A+ 1,)
© O O 0O 0 0O 0 O 0 O
@ O O O O 0O O O 0O
© O O 000 0 0 0 0
©@ O 0O 0O 0 O 0 g O 0
© 0O O 0 O 0 O 0 O 0

R
7 PRI S
£ LA o
éd’{ 0 i A IR
¥ | :!“v Il
i)

O Grid Solver

O 0O 0O O O 0 O o O o°
c o0 O O O 0 o0 O O O
©c o o o o o0 o0 0 O O Expression for updating each interior point:
© 0 00 (\I_,) © 00 0o Ali,j]1=0.2 x (A[i,j]+ A[i,j? 1]+ A[i ?1,j] +
© 0 0 O0~4~0 0 0 0O Allj +1]+ Al +1,])
O o0 0O O O 0 0o O O O
o o0 O O O O o O O O
O o0 0O O O o O o0 0o O
O 0o 0O 0O O 0 O O 0O O
O 0O 0O O O 0O O O O O

B Gauss-Seidel (near-neighbor) sweeps to convergence
» interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
» updates done in-place in grid
» difference from previous value computed
» accumulate partial diffs into global diff at end of every sweep

» check If has converged
v to within a tolerance parameter

Sequential Version

I. int n; size of matrix: (n + 2-by-n + 2) elements
2. float **A, diff = 0;

3. main ()

4. begin

5. read(n) ; /*read input parameter: matrix size*/
6. A ¢« malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize (2); /*initialize the matrix A somehow™*/
8. Solve (A); /*call the routine to solve equation™®/
9. end main

10. procedure Solve (A) /*solve the equation system™*/

11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12.begin

13. int i, j, done = 0;
14. float diff = 0, temp;

15. while (!done) do /*outermost loop over sweeps™*/

16. diff = 0; /*initialize maximum difference to 0%/
17. for 1 « 1 to n do /*sweep over nonborder points of grid*/
18. for 3 « 1 to n do

19. temp = A[i,Jj]; /*save old value of element*/

20. Ali,j] « 0.2 * (A[i,3] + A[i,3-1] + A[i-1,3] +
21. Ali,j+1]1 + A[i+1,3]); /*compute average*/

22. diff += abs(A[i,]J] - temp);

23. end for

24, end for

25. if (diff/(n*n) < TOL) then done = 1;

26. end while
27.end procedure

O Four steps in parallelizing a program:
B Decomposition of the computation into tasks.
W Assignment of tasks to threads.

B Orchestration of the necessary data access, communication, and
synchronization among threads.

B Mapping of threads to processors.

Partitioning
I
— -

u:-:—-'u'umi

'

000.000
OooOO Y50

-—:!Eha:ﬂﬂ-mm?-"

So0—~—wmowIocoaald —
JD-r-er-m:pI(‘:ﬂo

Sequen!ial Tasks Processes Parallel Processors
COprthﬂlJOn program

Table 2.1 Steps in the Parallelization Pocess and Their Goals

Architecture-
Step Dependent? Major Performance Goals
Decomposition Mostly no Expose enough concurency but not too much
Assignment Mostly no Balance workload
Reduce communication volume
Orchestration Yes Reduce noninherent communication Ma data
locality
Reduce communication and synchonization cos
as seen by the pocessor
Reduce serialization at shaed resources
Schedule tasks to satisfy dependences early
Mapping Yes Put related processes on the same pocessor if

necessary
Exploit locality in network topology

How to execute the cooperated units?

— Parallel/Distributed

Processor
—— D DHD D—HDH—HDF—
v _S -
: gL
Instructions QD
—— c ®©
Shared 8=
Memory : Processor £
: 2 S
O
A Z
— D DHD DHDH—/D/—
—_— i +—P>
. v
Instructions
Parallel: Multiple CPUs within a Distributed: Multiple machines with own

shared memory machine memory connected over a network

Chapter 02: HPC with example

ClFaster for larger data

® Seguential implementation with Python
» “Using Python to Solve Computational Physics Problems”

® |deas to convert Sequential to Parallel
>

® Measure the performance

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

1. You have to convert your program into EUs
® DAOM/PCAM

2. Choose environment to finish EUs

B Systems
» Parallel: multi-processor system — Multi-Core, GPU, MPP, ...
» Distributed: Cluster

M Frameworks
»Data parallel, SAS (Shared Address Space), Message passing
»MPI (P or D), CUDA (P), MR (D)

3. EXxecute

100

80

60

40

20

30

40

50

Calculate the value of each cell by averaging its 4 neighboring cells

O+O+O+O_9_O 60+O+O+O_6O_15
4 4 4 4
\100 80
100 O
80 0(
N
o | o [~Uu
0 0 0

Calculate the difference between the
revious cell values and new cell values

80 60 80 60

10 0) 0 0 10 >20 15
\/ /
80 0 x 0 80/| 20 0 0

After computing the difference for each cell,
Determine the Maximum Temperature ACROSS your
roblem chunk

100 80 60

100 | 50 20 15

80 | 20 0 0 > 50

Send this value to

60
15 0 0 coordinator

Coordinator

Coordinator Waits for all processing elements
to send their values and determines the
maximum of all the values it receives

Coordinator
50 10 10

25

—> max(50,10,10,25) =50

YES

MAX <

STOP
7.07

O Implement as an SAS/SPMD (Shared Address Space/Single Program

Multiple Data) model

[0 The entire array is partitioned and distributed
as subarrays to all tasks. Each task owns a
portion of the total array.

] Determine data dependencies
B interior elements belonging to a task are independent of other tasks
® border elements are dependent upon a neighbour task's data, necessitating communication.

[0 Master process sends initial info to workers, checks for convergence and
collects results

[0 Worker process calculates solution, communicating as necessary with
neighbour processes

[0 Pseudo code solution: red highlights changes for parallelism.

http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_interior.gif
http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_edge.gif

find out if I am MASTER or WOREER

if I am MASTER
initialize array
— SeNd each WOBKER starting info and subarray

do until all WOREKERS converyge
gather from all WORKERS convergence data
broadcast to all WORKERS convergence signal
end do

receive results from each WORKEER

else if T am WORKER
receive from MASTER starting info and subarray

do until solution converqged
update time
send neighbors my border info
receive from neighbors their border info

update my portion of solution array
determine if my solution has converged
send MASTER convergence data
receivre from MASTER convergence signal

end do

send MASTER results

endif

[0 In the previous solution, it was assumed that blocking communications
were used by the worker tasks.

@ Blocking communications wait for the communication process to complete before
continuing to the next program instruction.

M |n the previous solution, neighbour tasks communicated border data, then each process
updated its portion of the array.

[0 Computing times can often be reduced by using non-blocking
communication.

B Non-blocking communications allow work to be performed while communication is in
progress.

B Each task could update the interior of its part of the solution array while the
communication of border data is occurring, and update its border after communication
has completed.

[0 Pseudo code for the second solution: red highlights changes for non-
blocking communications.

find out if T am MASTER or WOREER

if I am MASTER
initialize array
gsend each WORKER starting info and subarray

do until all WOREERS converge
gather from all WORKERS convergence data

broadcast to all WOREKERS convergence signal
end do

receive results from each WOREER

else if T am WOREKER
receive from MASTER starting info and subarray

do until solution converged
update time

non-blocking send neighbors my border info
non-blocking receive neighbors border info

update interior of my portion of solution array
wait for non-blocking communication complete
update horder of my portion of solution array

determine if my solution has converged

gsend MASTER convergence data
receivre from MASTER convergence signal

end do
send MASTER results

endif

Summary

D Programmlng mOdels IShared Memory l.\/lessage Passing
® Shared memory (threads) I ' |
B Message passing (MPI) < S
. vVYvyyvyy vy vy
[0 Design Patterns PPy Py Py Py P Py Py Py Py

B Master-slaves
M Producer-consumer flows
W Shared work queues

producer consumer
master

work queue

slaves H—'i-l—’i

producer consumer

Challenges:
Domain Decomposition & Load Imbalance

O TR TR
vk awll e n v bevad A
B bl vaiar

[16] Map Analysis - Understanding
Spatial Patterns and Relationships, Book

W-||j1j{2]-[3}f4]

| 6 _[7 —[8 }‘ unused I‘lli“lhil
I j—[10 H 11 H 12 } resources II

!JEE?F

" EEN
FEEEEE

LS

TII'I'IE
Modified from [2] Introduction to High Performance * Load imbalance hampers performance,
Computing for Scientists and Engineers because some resources are underutilized

Challenges:

Ghost/Halo Regions & Stencil Methods

<]

g

et [
. [2] Introduction to High Performance
3%16=42 Computing for Scientists and Engineers
® & & @ ¢ l
@ é o o S 1
e -~ 0 {;; ﬁ}w
e o ¢ .9 <)
o @& @ @ ¢

4*8=32

Stencil-based iterative
methods update array
elements according to a
fixed pattern called ‘stencil’

The key of stencil methods
is its regular structure

mostly implemented using
arrays in codes

Chapter 02: HPC with example

ClFaster for larger data
® Seguential implementation with Python
» “Using Python to Solve Computational Physics Problems”

® |deas to convert Sequential to Parallel
» Shared Memory programming, Distributed Memory programming
» Hint to get the EUs for the Heat Equation

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble

Units of Measure

« High Performance Computing (HPC) units are:
- Flop: floating point operation, usually double precision unless noted
- Flop/s: floating point operations per second
- Bytes: size of data (a double precision floating point number is 8 bytes)

* Typical sizes are millions, billions, trillions...

Mega Mflop/s = 10° flop/sec Mbyte = 220 = 1048576 ~ 10° bytes
Giga Gflop/s = 10° flop/sec Ghyte = 230 ~ 10° bytes
Tera Tflop/s = 10'? flop/sec Thyte = 240 ~ 102 bytes
Peta Pflop/s = 101> flop/sec Pbyte = 250 ~ 101 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 2%0 ~ 1018 bytes
Zetta Zflop/s = 10?1 flop/sec Zbyte = 270 ~ 102! bytes
Yotta Yflop/s = 10%* flop/sec Ybyte = 280 ~ 1024 bytes

« Current fastest (public) machine ~ 55 Pflop/s, 3.1M cores
- Up-to-date list at www.top500.0rg

Linpack (LINear algebra PACKage) Overview 9

Clintroduced by Jac

K Dongarra in 1979

CO0Based on LINPAC
Dongarra, J. Bunc

K linear algebra package developed by J.

n, C. Moler and P. Stewart (now superseded

by the LAPACK library)

C0Solves a dense, regular system of linear equations, using
matrices initialized with pseudo-random numbers

COProvides an estimate of system’s effective floating-point
performance

C0Does not reflect the overall performance of the machine!

Is parallelization worth it ?

[0 We parallelize our programs in order to run them faster

0 How much faster will a parallel program run?

B Suppose that the sequential execution of a program takes T, time units and
the parallel execution on p processors takes T, time units

B Suppose that out of the entire execution of the program, s fraction of it is not
parallelizable while 1-s fraction is parallelizable

¥ Then the speedup (Amdahl's formula):

Ty

Ty 1

— =
Tp (Ty XS+T; sz) s+ —

sy

ALEXIS DANIELS

[0 Amdahl’s Law: An Example

M Suppose that 80% of you program can be parallelized and that you use 4
processors to run your parallel version of the program

M The speedup you can get according to Amdahl is:

1 1 .
— = = 2.5times
s+% 0.2+°T8

B Although you use 4 processors you cannot get a speedup more than 2.5
times (or 40% of the serial running time)

BT 5138 2.1.1 Amdahl %AZ, 3 @& eh— At AL, B $ATPT B ada b . ML
o v nmmniane 0 @ NRCIEAEG AT Ak P A F:\My7\MyClasses\12.1 HPC\Materials\i5 P4 #¢ 7:47115.(200544 6 H).pdf
S (q) = ——— (2.4)
oy e

http://www.scgm"d.cn/ Amdah[K?ﬁﬁﬂ}]? El_ﬁ q _,r_‘_g kﬂ"j‘_}, *S,p(q) I&J;}\—E:,;r ko 1’?_7\%—? *E}%ﬁiﬁf\éﬁ o &:’;}t?%_i}ia ii@{i

http://www. cngrid.org/

% VR IEH, Aoik A94EET R AERR AT 1/a.

’ R — 1
Amdahl’s law: R = =P /N

p: fraction of work that can be parallelized
1 — p: fraction of sequential work
R: prediction maximum speed-up using /N parallel processors

Serial Parallelizable work Arndahl's Law

20,00

18.00 f,/"/‘

Farallel Fartion
16.00 1 ' ' 1 S0%

75%

14.00 / S0%
/ — 95%
12.00 ! A

10,00 . % / —

8.00 f"‘l i

e —

Speedup

P
L~
&. 00 1 !{i;;ff
4.00
i N —
..-'J_d_,.,-“'_’—'_‘-
z.ccf___
0.00+—y 1 ; ¥
/N 2 R S OB w oMo
- M A0

Mumber of Processars

W O SRR S TR

== b] O [72] Georg Hager, [7Z Gerhard Wellein
idis i " (BRI BN STEUE) AT
5 TSV FESCHAIRE N BELTEIROIREATR, T&
nin e W@@%ﬂﬁkH%MW? M. IR AT

N, z’ﬂjjimﬁﬁ%mﬁ’] MEREB DTN PRIEME 1 IEE0AY
EIoE

IT{FEEﬂmT HEEITERICERR, S1FFH1T
fii. F47. OpenMP. MPI, BEERIZITHAN

l1’|5%1‘E S SRR IR 7 —Eana1e) ﬁEI’\J%’q’:H%
JRE S ﬁDﬁ’ﬁﬁxﬂZE’JCH{ﬁﬁ% GPUZRIES

https://book4you.org/g/%5b%E5%BE%B7%5d%20Georg%20Hager
https://book4you.org/g/%5b%E5%BE%B7%5d%20Gerhard%20Wellein

BE"’S LaW https://gordonbell.azurewebsites.net/ [K

Bell's Law of Computer Class formation
was discovered about 1972. It states that technc
advances in semiconductors, storage, user interface
and networking advance every decade enable a new,
usually lower priced computing platform to form. Once
formed, each class is maintained as a quite
independent industry structure.

This explains mainframes, minicomputers, workstations
and Personal computers, the web, emerging web
services, palm and mobile devices, and ubiquitous
interconnected networks. We can expect home and
body area networks to follow this path.

From Gordon Bell (2007),
http://research.microsoft.com/~GBell/Pubs.htm

http://research.microsoft.com/~GBell/Pubs.htm
https://gordonbell.azurewebsites.net/

https://www.computerhistory.org/atchm/the-
worlds-smallest-computer/

Bell’s Law states, that:

[0 Important classes of computer architectures come in cycles of about 10
years.

Mainframe

mE mm-scale
= sensors
()
=
=
S
0 Personal
10 Computer
10° i ' Smart Phone

1960 1970 1980 1990 2000 2010 2020
Year

https://www.computerhistory.org/atchm/the-worlds-smallest-computer/

Bell’s Law of Computer Classes:
A new computer class emerges roughly every decade

‘Roughly every decade a new, lower
Mainframe priced computer class forms based on
1 per Enterprise a new programming platform,
network, and interface resulting in
new usage and the establishment of a

new industry.”
[Bell et al. Computer,
1972, ACM, 2008]

Smart
_Sensrs

log (people per computer)

Mini
Computer | @ * o
1 per Company \ o’
Personal; per Family 1 per person o* 100 - 1000’s
*
Computer Smartphone per person
1 9'50 1 9'60 1 970 1 9'80 1 9'90 20'00 20'1 0 20l20

HPC Performance Tools

« Local module setup
« Compilers®
« Libraries*®

Make it work,
make it right,

make It fast.

Kent Beck

Debugger: A
« TotalView
« DDT
« STAT
« MUST
/

Performance Tools: \

« Performance Reports
Darshan

» Score-P

Scalasca

Vampir

HPCToolkit

TAU

NVIDIA Visual Profiler

Extrae/Paraver

\ PAPI /

0 Vampir Event Trace Visualizer

= Offline trace visualization for Score-P’s
OTF2 trace files

* Visualization of MP|, OpenMP
and application events:

= All diagrams highly customizable (through context menus)
= | arge variety of displays for ANY part of the trace
= http://www.vampir.eu/

VAMPBIR

= Advantage:

= Detailed view of dynamic application behaviour
* Disadvantage:

* Requires event traces (huge amount of data)

= Completely manual analysis

O Vampir Displays

Vampir - [Trace View - /homefdoleschaftracefiles/feature-traces/wr 1o-mem-rusage/wrt. 1h.ot

W File View Help
View Chart Filter

SXkOIIERS & o 7 | M— 0T NN N N0R U

Timeline Function Summanry
All Processes, Accumulated Exclusive Time p...

Os 5s 10 s 15s 20 s 25 s 30s 35s 40 s

Process 8
Process 25 ;
242195072 5
Process 42 112424503 5
3.467969 5
Process 59

2.165661 5
Process O

Communication Matrix \View

Mumber of Messages

il

Process summary Context View

& Function Surmmary £ l -
Property |Va|ue |
Display Function Summary
Function Group MPI (6)

Accurmnulated Exclusive Time 748.945947 s (29,198329%)

Numerical

Linear Algebra

for
High-Performance
Computers

Qongarra,
Dutf
Sorensen
van der Vorst

SOFTWARE - ENVIRONMENTS - TOOLS

0 Numerical Linear Algebra on High-Performance
Computers

O Jack J. Dongarra, lain S. Duff, Danny C.
Sorensen, Hank A. van der Vorst

01987

https://2lib.org/g/Jack%20J.%20Dongarra
https://2lib.org/g/Iain%20S.%20Duff
https://2lib.org/g/Danny%20C.%20Sorensen
https://2lib.org/g/Hank%20A.%20van%20der%20Vorst

Advances in

LOMPUTERS

Volume 45

0 Emphasizing Parallel Programming Techniques
O Marvin Zelkowitz Ph.D. MS BS.
11997

MARVIN V. ZELKOWITZ

https://2lib.org/g/Marvin%20Zelkowitz%20Ph.D.%20%20MS%20%20BS.

High |
Performance
Python

Practical Performant
Programming for Humans

0 High Performance Python, 2nd Edition
0 Micha Gorelick, lan Ozsvald
O April 2020

0 Advanced Algorithms and Data Structures
0 Marcello La Rocca
0 May 2021

