
大
纲 前言

◼为什么需要“大规模计算” [HPC, DL, Business platform system, Cloud已经合流]

➢导入 – 科学计算(天气预报)，DL, 互联网平台(Google, Amazon, Alibaba, MeiTuan, …)

基础篇
◼ 并发程序的样子 – Divide & Conquer, Model & Challenges, PCAM, Data/Task, …

➢天气预报的计算

◼ 运行环境

➢硬件 – 自己梳理的3个方案 – Shared/Unshared Memory, Hybrid

➢系统软件 – 协议栈, Modern OS, Distributed Job Scheduler, GTM等

算法级篇
◼ OpenMP, MPI, CUDA (DL的实现), Big Data 中的MR/Spark等 (只涉及在Big Data SDK之上的编
程；大数据本身的介绍放到后一部分)

系统级篇 – 互联网平台的实现

◼ “秒杀”的技术架构

◼ 计算广告

◼ 系统架构 (HTAP等)

➢ Flink, ClickHouse, MaxCompute, ELK …
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Parallel Computing: Fundamentals, Applications 

and New Directions

E.H. D'Hollander, F.J. Peters, G.R. Joubert, U. 

Trottenberg and R. Völpel (Eds.)

North Holland

1998

https://book4you.org/g/E.H.%20D'Hollander
https://book4you.org/g/F.J.%20Peters
https://book4you.org/g/G.R.%20Joubert
https://book4you.org/g/U.%20Trottenberg%20and%20R.%20V%C3%B6lpel%20(Eds.)
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并行编程模式

Timothy G. Mattson, Beverly A. Sanders, Berna 

L. Massingill

本书介绍了并行编程模式的相关概念和技术，主
要内容包括并行编程模式语言、并行计算的背景
、软件开发中的并发性、并行算法结构设计、支
持结构、设计的实现机制以及OpenMP、MPI等。
本书可供软件专业的本科生或研究生使用，同时
也可供从事软件开发工作的广大技术人员参考。

2015

https://book4you.org/g/Timothy%20G.%20Mattson
https://book4you.org/g/Beverly%20A.%20Sanders
https://book4you.org/g/Berna%20L.%20Massingill
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并行计算导论

Ananth Grama, George Karypis, 张武, 毛国勇
, Anshul Gupta, Vipin Kumar, 程海英
◼《并行计算导论》(原书第2版)全面介绍并行计算的
各个方面，包括体系结构、编程范例、算法与应用
和标准等，涉及并行计算的新技术，也覆盖了较传
统的算法，如排序、搜索、图和动态编程等。《并
行计算导论》(原书第2版)尽可能采用与底层平台无
关的体系结构并且针对抽象模型来设计处落地。书
中选择MPI、POSIX线程和OpenMP作为编程模型
，并在不同例子中反映了并行计算的不断变化的应
用组合

2005

https://book4you.org/g/Ananth%20Grama
https://book4you.org/g/George%20Karypis
https://book4you.org/g/%E5%BC%A0%E6%AD%A6
https://book4you.org/g/%E6%AF%9B%E5%9B%BD%E5%8B%87
https://book4you.org/g/Anshul%20Gupta
https://book4you.org/g/Vipin%20Kumar
https://book4you.org/g/%E7%A8%8B%E6%B5%B7%E8%8B%B1
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Chapter 02: HPC with example 

Faster for larger data

⚫Sequential implementation with Python

➢ “Using Python to Solve Computational Physics Problems”

⚫ Ideas to convert Sequential to Parallel

➢Shared Memory programming, Distributed Memory programming 

➢Hint to get the EUs for the Heat Equation 

⚫Measure the performance 

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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Hints You’re required to implement 

this Heat Transfer problem 

into Distributed Versions –

MPI, CUDA and MR (even 

multithreaded) 

1000X1000, 10000X10000, 

100000X100000,…
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CISE301_Topic958

We have know Solution Technique
A grid is used to divide the region of interest.

◼Since the PDE is satisfied at each point in the area, it must be satisfied at 
each point of the grid.

A finite difference approximation is obtained at each grid point.   
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The code demonstration of “Using Python to Solve Computational 

Physics Problems”

1. Configure the parameters 

◼GRID

➢With Initial values [初始值]

➢Boundary conditions 

✓ [边界条件]

◼ Termination condition

➢Iteration number or Epsilon 

import numpy as np

# Set Dimension and delta
lenX = lenY = 100 #we set it 
rectangular
delta = 1
# Initial guess of interior grid
Tguess = 0

# Set meshgrid
X, Y = np.meshgrid(np.arange(0, 
lenX), 
np.arange(0, lenY))

# Set array size and set the 
interior value with Tguess
T = np.empty((lenX, lenY))
T.fill(Tguess)

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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The code demonstration of “Using Python to Solve Computational 

Physics Problems”

1. Configure the parameters 

◼GRID

➢With Initial values [初始值]

➢With Boundary conditions 

✓ [边界条件]

◼ Termination condition

➢Iteration number or Epsilon 

# Boundary condition
Ttop = 100
Tbottom = -30
Tleft = 0
Tright = 0

# Set Boundary condition
T[(lenY-1):, :] = Ttop
T[:1, :] = Tbottom
T[:, (lenX-1):] = Tright

T[:, :1] = Tleft

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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The code demonstration of “Using Python to Solve Computational 

Physics Problems”

1. Configure the parameters 

◼GRID

➢With Initial values [初始值]

➢With Boundary conditions 

✓ [边界条件]

◼ Termination condition

➢Iteration number or Epsilon 

# Set maximum iteration
maxIter = 100
# Iteration (We assume that the 
iteration is convergence in maxIter 
= 500)
print("Please wait for a moment")

for iteration in range(0, maxIter):

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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The code demonstration of “Using Python to Solve Computational 

Physics Problems”

2. Iterative updating 

◼Use “Termination condition”
to control the updating of 
the internal vertices 

# Iteration (We assume that the iteration is convergence in maxIter = 500)
print("Please wait for a moment")
for iteration in range(0, maxIter):

for i in range(1, lenX-1, delta):
for j in range(1, lenY-1, delta):

T[i, j] = 0.25 * (T[i+1][j] + T[i-1][j] + T[i][j+1] + T[i][j-1])

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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The code demonstration of “Using Python to Solve Computational 

Physics Problems”

3. Visualize the dynamics 

# Set colour interpolation and colour map
colorinterpolation = 100
colourMap = plt.cm.jet #you can try: colourMap = plt.cm.coolwarm

<<Repeated updating>>

# Configure the contour
plt.title("Contour of Temperature")
plt.contourf(X, Y, T, colorinterpolation, cmap=colourMap)

# Set Colorbar
plt.colorbar()

# Show the result in the plot window
plt.show()

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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Copy the code into PyCharm project
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Small challenge 

Define and use Epsilon to control the repetition?

Hint:

◼Use the matrix norm
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Run the program with different scales

◼When the “maxIter = 100000”, the program takes almost 40 minutes!

◼When “lenX = lenY = 10000” + “maxIter = 1000”, it takes 64832 secs = 18 
hours!
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You can try 

Run the program with different scales

◼When “lenX = lenY = 100000” + “maxIter = 1000”, the error of 
“MemoryError”!!

◼How to finish the computation of the weather-forecasting for BeiJing, China, 
Globe?
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Chapter 02: HPC with example 

Faster for larger data

⚫Sequential implementation with Python

➢ “Using Python to Solve Computational Physics Problems”

⚫ Ideas to convert Sequential to Parallel

➢Shared Memory programming, Distributed Memory programming 

➢Hint to get the EUs for the Heat Equation 

⚫Measure the performance 

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble


69



70



71

HPComputing: How to get cooperated units?
– Divide & Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine
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Example: scalar product of vectors

input

output

input

output

Parallel algorithmSequential (serial) algorithm

ba


,

do i=1,N

S=s+aibi

enddo

print S

ba


,

do i=1,N/2

s1=s1+aibi

enddo

do i=N/2+1,N

s2=s2+aibi

enddo

print S

S=s1+s2
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DAOM (1991)

4 Steps in Creating a Parallel Program

➢Decomposition of computation in tasks

➢Assignment of tasks to processes

➢Orchestration of data access, comm, synch.

➢Mapping processes to processors

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

K. Mani Chandy, Stephen Taylor. An Introduction to Parallel Programming. Jones and Bartlett. Publishers, Inc., 

Burlington. 1991. 
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Foster‘s model – PCAM (1995)

 In "Designing and Building Parallel Programs" Ian Foster proposes a 

model with tasks that interact with each other by communicating 

through channels.

◼A task is a program, its local memory, and its communication in-ports and 
out-ports.

◼A channel connects a task's in-port to another task's out-port.

◼Channels are buffered. Sending is asynchronous while receiving is 
synchronous (receiving task is blocked until expected message arrives).
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划分 (Partition/Decompose)

◼充分开拓算法的并发性和可扩放
性；

◼先进行数据分解(称域分解)，再进
行计算功能的分解(称功能分解)；

◼使数据集和计算集互不相交；

◼划分阶段忽略处理器数目和目标
机器的体系结构；

◼能分为两类划分：
➢域分解(Domain Decomposition)

➢功能分解(Functional 
Decomposition)
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域分解
◼划分的对象是数据，可以是程序中的输入数据、中间处理数据和输出数据；

◼将数据分解成大致相等的小数据片；

◼划分时考虑数据上的相应操作；

◼如果一个任务需要别的任务中的数据，则会产生任务间的通信；

示例：三维网格的域分解，各格点上计算都是重复的。下图是三种分解方
法

‐1  D ‐2  D ‐3  D
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不规则区域的分解示例
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功能分解
◼划分的对象是计算（亦称为任务分解或计算划分），将计算划分为不同的任务
，其出发点不同于域分解；

◼划分后，研究不同任务所需的数据。如果这些数据不相交的，则划分是成功的
；如果数据有相当的重叠，意味着存在大量的通信开销，要重新进行域分解
和功能分解；

◼功能分解是一种更深层次的分解

 示例1：搜索树 示例2：气候模型



91

通信
◼通信是PCAM设计过程的重要阶段；

◼划分产生的诸任务，一般不能完全独立
执行，需要在任务间进行数据交流；从
而产生了通信；

◼功能分解确定了诸任务之间的数据流；

◼诸任务是并发执行的，通信则限制了这
种并发性

四种通信模式
◼局部/全局通信

◼结构化/非结构化通信

◼静态/动态通信

◼同步/异步通信
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局部通信 全局通信
◼通信限制在一个邻域内 ■ 例如：

- All to All

- Master-Worker

5
3

7
2

1
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结构化通信
◼每个任务的通信模式是相同的；

◼下面是否存在一个相同通信模式？
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非结构化通信 静态/动态通信
◼没有一个统一的通信模式 通信伙伴的身份不随时间
例如：无结构化网格 改变；动态通信中，通信伙伴的

身份则可能由运行时所计算的数
据决定且是可变的
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同步/异步通信
◼同步通信时，接收方和发送方协同操作；异步通信中，接收方获取数据无需与
发送方协同

通信判据
◼所有任务是否执行大致相当的通信?

◼是否尽可能的局部通信？

◼通信操作是否能并行执行?

◼同步任务的计算能否并行执行？
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任务组合
◼组合是由抽象到具体的过程，是将
组合的任务能在一类并行机上有效
的执行；

◼合并小尺寸任务，减少任务数。如
果任务数恰好等于处理器数，则也
完成了映射过程；

◼通过增加任务的粒度和重复计算，
可以减少通信成本；

◼保持映射和扩展的灵活性，降低软
件工程成本



97

表面-容积效应
◼通信量与任务子集的表面成正比，计算量与任务子集的体积成正比；

◼增加重复计算有可能减少通信量
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重复计算
◼重复计算减少通信量，但增加了计算量，应保持恰当的平衡；

◼重复计算的目标应减少算法的总运算时间

示例：二叉树上N个处理器求N个数的全和，要求每个处理器均保持全和
◼二叉树上求和，共需2logN步

103210 32

s

s

s

ss s

b b

bbbb
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示例：二叉树上N个处理器求N个数的全和，要求每个处理器均保持全和
◼蝶式结构求和，使用了重复计算，共需logN步

1 65432 70
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组合判据
◼增加粒度是否减少了通信成本？

◼重复计算是否已权衡了其得益？

◼是否保持了灵活性和可扩放性？

◼组合的任务数是否与问题尺寸成比例?

◼是否保持了类似的计算和通信？

◼有没有减少并行执行的机会？
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处理器映射
◼每个任务要映射到具体的处理器
，定位到运行机器上；

◼任务数大于处理器数时，存在负
载平衡和任务调度问题；

◼映射的目标：减少算法的执行时
间
➢并发的任务 不同的处理器

➢任务之间存在高通信的 同一处
理器

◼映射实际是一种权衡，属于NP完
全问题
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负载平衡
◼静态的：事先确定；

◼概率的：随机确定；

◼动态的：执行期间动态负载；

◼基于域分解的：
➢递归对剖

➢局部算法

➢概率方法

➢循环映射
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任务分配与调度

◼负载平衡与任务分配/调度密切相关，任务分配通常有静态的和动态的两种方
法。

◼静态分配一般是任务到进程的算术映射。
➢静态分配的优点是没有运行时任务管理的开销，但为了实现负载平衡，要求不同任务的工
作量和处理器的性能是可以预测的并且拥有足够的可供分配的任务。

➢静态调度（Static Scheduling）方案一般是静态地为每个处理器分配个连续的循环迭代，
其中为迭代次数，是处理器数。也可以采用轮转（Round-robin）的方式来给处理器分配
任务，即将第i个循环迭代分配给第i mod p个处理器

◼动态分配与调度相对灵活，可以运行时在不同处理器间动态地进行负载的调整
➢各种动态调度(Dynamic Scheduling)技术是并行计算研究的热点，包括基本自调度SS(Self 

Scheduling)、块自调度BSS(Block Self Scheduling)、指导自调度GSS(Guided Self 
Scheduling)、因子分解调度FS(Factoring Scheduling)、梯形自调度TSS(Trapezoid Self 
Scheduling)、耦合调度AS(Affinity Scheduling)、安全自调度SSS(Safe Self Scheduling)
和自适应耦合调度AAS(Adapt Affinity Scheduling)
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经理/雇员模式任务调度
◼任务放在集中的或分散的任务池中，使用任务调度算法将池中的任务分配给特
定的处理器

映射判据
◼采用集中式负载平衡方案，是否存在通信瓶颈？

◼采用动态负载平衡方案，调度策略的成本如何？
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SPMD or MPMD 

Single Program, Multiple Data

Multiple Program Multiple Data
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Single Program Multiple Data (SPMD)
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https://www.cs.ubbcluj.ro/~vniculescu/didactic/PPD/C10.pdf

https://www.cs.ubbcluj.ro/~vniculescu/didactic/PPD/C10.pdf
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Master/Slave or Master/Worker
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What is Master/Slave principle?

The master has the control over the running application, it 
controls all data and it calls the slaves to do there work

PROGRAM

IF (process = master) THEN

master-code

ELSE

slave-code

ENDIF

END
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Simple Example SPMD&Master/Slave

ba


,

=
2

2 iibas

=
1

1 iibas master

slave

S=s1+s2+s3

slave=
3

3 iibas

For i from rank step size to N do

s=s+aibi

enddo
a1b1+a1+sizeb1+size+a1+2*sizeb1+2*size+…
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Decomposition/Partitioning

◼ Identify concurrency and decide level at which to exploit it 

➢Break up computation into tasks to be divided among processes

◼ Tasks may become available dynamically

➢No. of available tasks may vary with time

◼Goal:  Enough tasks to keep processes busy, but not too many

➢Number of tasks available at a time is upper bound on achievable speedup
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One simple example – Data Parallelism

A parallelizing compiler must identify loops that do not have 

dependences BETWEEN ITERATIONS of the loop.

Example: Fork one thread for each

processor

Each thread executes the loop:

do I = my_lo, my_hi

A(I) = B(I) + C(I)

D(I) = A(I)

end do

Wait for all threads to finish

before proceeding.

do I = 1, 1000
A(I) = B(I) + C(I)
D(I) = A(I)

end do

Of course, real problems 
are more complex!!
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Decomposition/Partitioning

• Simple way to identify concurrency is to look at loop iterations

– dependence analysis; if not enough concurrency, then look further

• Not much concurrency here at this level (all loops sequential)

• Examine fundamental dependences

• Concurrency O(n) along anti-

diagonals, serialization O(n) along 

diag.

• Retain loop structure, use pt-to-pt

synch; Problem: too many synch ops.

• Restructure loops, use global synch; 

imbalance and too much synch
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Exploit Application Knowledge

◼Reorder grid traversal: red-black ordering

Red point

Black point

• Different ordering of updates: may converge quicker or slower 

• Red sweep and black sweep are each fully parallel: 

• Global synch between them (conservative but convenient)

• Ocean uses red-black

• We use simpler, asynchronous one to illustrate

• no red-black, simply ignore dependences within sweep

• parallel program nondeterministic
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Assignment/Agglomeration

◼ Specify mechanism to divide work up among  processes
➢ E.g. which process computes forces on which stars, or which rays

➢ Balance workload, reduce communication and management cost

◼ Structured approaches usually work well
➢ Code inspection (parallel loops) or understanding of application

➢ Well-known heuristics

➢ Static versus dynamic assignment

◼ As programmers, we worry about partitioning first
➢ Usually independent of architecture or prog model

➢ But cost and complexity of using primitives may affect decisions
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 Orchestration

➢Naming data

➢Structuring communication

➢Synchronization 

➢Organizing data structures and scheduling tasks temporally

◼ Goals

➢Reduce cost of communication and synch. 

➢Preserve locality of data reference

➢Schedule tasks to satisfy dependences early

➢Reduce overhead of parallelism management

◼ Choices depend on Prog. Model., comm. abstraction, efficiency of 
primitives 

◼ Architects should provide appropriate primitives efficiently
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Mapping

◼ Two aspects:

➢Which process runs on which particular processor?

✓mapping to a network topology

➢Will multiple processes run on same processor?

◼ space-sharing

➢Machine divided into subsets, only one app at a time in a subset

➢Processes can be pinned to processors, or left to OS

◼ System allocation

◼ Real world

➢User specifies desires in some aspects, system handles some

◼ Usually adopt the view: process ↔ processor
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Example: iterative equation solver

Simplified version of a piece of Ocean simulation

◼Goal: 

➢Simulate the motion of water currents in the ocean. Important to climate 
modeling. Motion depends on atmospheric forces, friction with ocean floor, and 
“friction” with ocean walls.

➢To predict the state of the ocean at any instant, we need to solve complex 
systems of equations.
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Example: iterative equation solver

Simplified version of a piece of Ocean simulation

 Illustrate program in low-level parallel language

◼C-like pseudocode with simple extensions for parallelism

◼Expose basic comm. and synch. primitives

◼State of most real parallel programming today

A[i,j ] = 0.2  (A[i,j] + A[i,j ? 1] + A[i ? 1, j] +

A[i,j + 1] + A[i + 1, j ])

Expression for updating each interior point:
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Grid Solver

◼ Gauss-Seidel (near-neighbor) sweeps to convergence

➢ interior n-by-n points of (n+2)-by-(n+2) updated in each sweep

➢updates done in-place in grid

➢difference from previous value computed

➢accumulate partial diffs into global diff at end of every sweep

➢check  if has converged  
✓ to within a tolerance parameter

A[i,j ] = 0.2  (A[i,j] + A[i,j ? 1] + A[i ? 1, j] +

A[i,j + 1] + A[i + 1, j ])

Expression for updating each interior point:
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Sequential Version
1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 

2.  float **A, diff = 0; 

 

3.  main() 

4.  begin 

5.   read(n) ;           /*read input parameter: matrix size*/ 

6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 

7.   initialize(A);        /*initialize the matrix A somehow*/  

8.   Solve (A);         /*call the routine to solve equation*/ 

9.  end main 

 

10. procedure Solve (A)       /*solve the equation system*/ 

11.  float **A;          /*A is an (n + 2)-by-(n + 2) array*/ 

12. begin 

13.  int i, j, done = 0; 

14.  float diff = 0, temp; 

15.  while (!done) do       /*outermost loop over sweeps*/ 

16.   diff = 0;          /*initialize maximum difference to 0*/ 

17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 

18.    for j  1 to n do 

19.     temp = A[i,j];     /*save old value of element*/ 

20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 

22.     diff += abs(A[i,j] - temp);      

23.    end for 

24.   end for 

25.   if (diff/(n*n) < TOL) then done = 1;         

26.  end while 

27. end procedure 
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Four steps in parallelizing a program:

◼Decomposition of the computation into tasks.

◼Assignment of tasks to threads.

◼Orchestration of the necessary data access, communication, and 
synchronization among threads.

◼Mapping of threads to processors.
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How to execute the cooperated units? 
– Parallel/Distributed

131

Shared

Memory

Parallel: Multiple CPUs within a 

shared memory machine

Distributed: Multiple machines with own 

memory connected over a network
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Chapter 02: HPC with example 

Faster for larger data

⚫Sequential implementation with Python

➢ “Using Python to Solve Computational Physics Problems”

⚫ Ideas to convert Sequential to Parallel

➢Hint to get the EUs for the Heat Equation 

⚫Measure the performance 

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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Hint to get the EUs for the Heat Equation

1. You have to convert your program into EUs

◼ DAOM/PCAM

2. Choose environment to finish EUs 

◼Systems 

➢Parallel: multi-processor system – Multi-Core, GPU, MPP, …

➢Distributed: Cluster 

◼ Frameworks 

➢Data parallel, SAS (Shared Address Space), Message passing 

➢MPI (P or D), CUDA (P), MR (D)

3. Execute 
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Calculate the value of each cell by averaging its 4 neighboring cells
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Calculate the difference between the 
previous cell values and new cell values 
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After computing the difference for each cell, 
Determine the Maximum Temperature ACROSS your 
problem chunk
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Coordinator Waits for all processing elements 
to send their values and determines the 
maximum of all the values it receives 

Coordinator

Proc 1 Proc 2 Proc 3 Proc 4

50 10 10 25

50)25,10,10,50max( =

MAX < 
7.0 ?

STOP

NO

YES
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Parallel Solution 1

 Implement as an SAS/SPMD (Shared Address Space/Single Program 

Multiple Data ) model 

 The entire array is partitioned and distributed 

as subarrays to all tasks. Each task owns a 

portion of the total array. 

 Determine data dependencies 

◼ interior elements belonging to a task are independent of other tasks 

◼ border elements are dependent upon a neighbour task's data, necessitating communication. 

Master process sends initial info to workers, checks for convergence and 

collects results 

Worker process calculates solution, communicating as necessary with 

neighbour processes 

 Pseudo code solution: red highlights changes for parallelism. 

http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_interior.gif
http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_edge.gif
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Parallel Solution 2
Overlapping Communication and Computation

 In the previous solution, it was assumed that blocking communications 
were used by the worker tasks. 

◼ Blocking communications wait for the communication process to complete before 
continuing to the next program instruction. 

◼ In the previous solution, neighbour tasks communicated border data, then each process 
updated its portion of the array. 

 Computing times can often be reduced by using non-blocking 
communication. 

◼ Non-blocking communications allow work to be performed while communication is in 
progress. 

◼ Each task could update the interior of its part of the solution array while the 
communication of border data is occurring, and update its border after communication 
has completed. 

 Pseudo code for the second solution: red highlights changes for non-
blocking communications. 
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Summary 

Programming models

◼Shared memory (threads)

◼Message passing (MPI)

Design Patterns

◼Master-slaves

◼Producer-consumer flows

◼Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

o
ry

master

slaves

producer consumer

producer consumer

work queue
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Challenges: 
Domain Decomposition & Load Imbalance
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Challenges: 
Ghost/Halo Regions & Stencil Methods
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Chapter 02: HPC with example 

Faster for larger data

⚫Sequential implementation with Python

➢ “Using Python to Solve Computational Physics Problems”

⚫ Ideas to convert Sequential to Parallel

➢Shared Memory programming, Distributed Memory programming 

➢Hint to get the EUs for the Heat Equation

⚫Measure the performance 

https://www.codeproject.com/Articles/1087025/Using-Python-to-Solve-Computational-Physics-Proble
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Units of Measure 
• High Performance Computing (HPC) units are:

- Flop: floating point operation, usually double precision unless noted

- Flop/s: floating point operations per second

- Bytes: size of data (a double precision floating point number is 8 bytes)

• Typical sizes are millions, billions, trillions…

Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes 

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes

Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes 

• Current fastest (public) machine ~ 55 Pflop/s, 3.1M cores

- Up-to-date list at www.top500.org
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Linpack (LINear algebra PACKage) Overview

Introduced by Jack Dongarra in 1979

Based on LINPACK linear algebra package developed by J. 
Dongarra, J. Bunch, C. Moler and P. Stewart (now superseded 
by the LAPACK library)

Solves a dense, regular system of linear equations, using 
matrices initialized with pseudo-random numbers

Provides an estimate of system’s effective floating-point 
performance

Does not reflect the overall performance of the machine!
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Is parallelization worth it ?

We parallelize our programs in order to run them faster

How much faster will a parallel program run?

◼Suppose that the sequential execution of a program takes T1 time units and 
the parallel execution on p processors takes Tp time units

◼Suppose that out of the entire execution of the program, s fraction of it is not 
parallelizable while 1-s fraction is parallelizable

◼ Then the speedup (Amdahl's formula):
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Amdahl’s Law: An Example

◼Suppose that 80% of you program can be parallelized and that you use 4 
processors to run your parallel version of the program

◼ The speedup you can get according to Amdahl is:

◼Although you use 4 processors you cannot get a speedup more than 2.5 
times (or 40% of the serial running time)

F:\My7\MyClasses\12.1 HPC\Materials\高性能并行计算(2005年4月6日).pdf
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高性能科学与工程计算

 [德] Georg Hager, [德] Gerhard Wellein

◼《计算机科学丛书：高性能科学与工程计算》从工
程实践的角度介绍了高性能计算的相关知识。主要
内容包括现代处理器的体系结构、为读者理解当前
体系结构和代码中的性能潜力和局限提供了坚实的
理论基础。

◼接下来讨论了高性能计算中的关键问题，包括串行
优化、并行、OpenMP、MPI、混合程序设计技术
。

◼作者根据自身的研究也提出了一些前沿问题的解决
方案，如编写有效的C++代码、GPU编程等。

https://book4you.org/g/%5b%E5%BE%B7%5d%20Georg%20Hager
https://book4you.org/g/%5b%E5%BE%B7%5d%20Gerhard%20Wellein
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Bell’s Law
Bell's Law of Computer Class formation 

was discovered about 1972. It states that technology 
advances in semiconductors, storage, user interface 
and networking advance every decade enable a new, 
usually lower priced computing platform to form. Once 
formed, each class is maintained as a quite 
independent industry structure. 

This explains mainframes, minicomputers, workstations 
and Personal computers, the web, emerging web 
services, palm and mobile devices, and ubiquitous 
interconnected networks. We can expect home and 
body area networks to follow this path. 

From Gordon Bell (2007), 
http://research.microsoft.com/~GBell/Pubs.htm

https://gordonbell.azurewebsites.net/

http://research.microsoft.com/~GBell/Pubs.htm
https://gordonbell.azurewebsites.net/


186

Bell’s Law states, that:

 Important classes of computer architectures come in cycles of about 10 
years.

https://www.computerhistory.org/atchm/the-

worlds-smallest-computer/

https://www.computerhistory.org/atchm/the-worlds-smallest-computer/
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HPC Performance Tools
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Vampir Event Trace Visualizer
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Vampir Displays
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Numerical Linear Algebra on High-Performance 

Computers

Jack J. Dongarra, Iain S. Duff, Danny C. 

Sorensen, Hank A. van der Vorst

1987

https://2lib.org/g/Jack%20J.%20Dongarra
https://2lib.org/g/Iain%20S.%20Duff
https://2lib.org/g/Danny%20C.%20Sorensen
https://2lib.org/g/Hank%20A.%20van%20der%20Vorst
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Emphasizing Parallel Programming Techniques

Marvin Zelkowitz Ph.D. MS BS.

1997

https://2lib.org/g/Marvin%20Zelkowitz%20Ph.D.%20%20MS%20%20BS.
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High Performance Python, 2nd Edition

Micha Gorelick, Ian Ozsvald

April 2020
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Advanced Algorithms and Data Structures 

Marcello La Rocca

May 2021


